A NEW SPECIES OF PAUROPUS FROM VICTORIA

 B? O. W. Tiegs, D.Sc., Associate-Professor of Zoology, University of MelbourneAlthough Pauropoda are of widespread occurrence in Australia, they have not attracted much attention from systematists, probably owing to their small size and obscure habitat. Nearly thirty years ago Harrison (2) described five species, including a member of the remarkable genus Eurypuuropus, from the neighbonthod of sydney; since then the list of Australian species has not, as far as I am aware, been added to.

The species which is described in the present paper is one that I have obtained in large numbers in the damp mountainons forest country at Belgrave in Victoria, and 1 am using it at present as material for the study of the embryology of these pecufiar arthropods. As it seems to be distinet from any other form hitherto reeorded, a taxonomic description is needed.

In the following aceount I have fairly closely followed the method of deseription worked ont by Hansen (1) ; for when types are not accessible, comparison with his species can be made only on the basis of those charactors to which he specifically refers. The nomenclature adopted is also based on that of Hansen.

Class PAUROPODA Lubbock, 1868
 Order HETEROGNATHA Saussere et Humbert, 1872
 Family PAUROPODIDAE Lubbock, 1868
 Genus PAUROPUS' Lubbock, 1868

Pauropus silluticus sp. nov

Size. The largest specimens encountered measured 12 mm . in length, the smallest with full number of legs, about 0.86 mm ; the average length based on a measurement of twelve individuals, is 097 mm. Average breadth about 0.23 mm.

Head (fig. 1). The distance between the "ocular areas" on the dorsal surface of the head is about the same as the length of the areas.

The head is itself completely free from pubescence; its setae are, however, all covered with a very delicate, just perceptible pubescence.

These setae are, as usual, disposed in four transverse rows: (i) An anterior, mainly pre-antennal, row of setae, of which one lies unpaired in the median line. Five of these setae are clavate, measuring 02 mm . in length; but the two most lateral setace are delicate and cylindrical, and are not longer than the clavate setae. (ii) The second row is post-antemal, and comprises eight sctac, of which six are clavate and are similar to those of the first row, while the two most lateral setite are cylindrical, and do not exceerl the clavate setae in length. This row ends just in front of the inner angles of the "ocular areas." (iii) The third row consists of six widely spaced setae, of which four are clavate, while the two most lateral,
arising from the sides of the head, are long and cylindrical, measuring about - 04 mm . in length. (iv) In the fourth row there are eight widely spaced setae, of which the middle pair is short and clavate, measuring only about .014 mm . in length, while the three pairs to the sides of these are cylindrical, the inner two pairs measuring about $\cdot 036 \mathrm{~mm}$. in length, the most lateral pair about two-thirds of this.

FIG. 1.
Head; dorsal view ; right antenna removed to show the setae beneath it.
In addition to these setae, there are present three unpaired clavate setae, which are in a line with the median seta of the first transverse row; one of these, at the very tip of the head, is minute; the other two, between the bases of the antennae, are only a little shorter than the clavate setae of the first row.

Antennae (fig. 2). The distal segment of the antenna is much the longest, and is nearly twice the length of the third segment. There are two minute setae on

FIG. 2
Antenna.
A. Right antenna, ventral view.
B. Distal end of lower ramus, showing the globulus (from a microtome section).
each of the first three segments, just perceptibly clavate, except one on the third segment, which is markedly clavate and larger. On the fourth segment the two setae are long, slender and cylindrical; one is almost as long as the peduncle, the other about three-quarters its length. The upper ramus of the antenna is as long as the peduncle, and is very slender, its length being about eight times its breadth;
it is about half the length of its flagellum. The lower ramus of the antenna measures about five-eighths of the length of the upper ramos, and is about three times as long as broad; its anterior flagellum is only very slightly shorter than the posterior, and measures about $2 \pm$ times the length of the lower ramos. The globulus (fig. 2B) is comparatively small, and is about twice the width of its very short stalk.

Trunk. This is of medium build, being neither exceptionally slender, nor, compared with other species, markedly robust. It gradually widens up to the fifth segment, and beyond the seventh tapers more sharply.

The dorsal shields are approximately rounded, the first being about the breadth of the head. They are completely devoid of pubescence. The setae are cylindrical with blunt ends; and though some are slightly swollen at the tips, they are never markedly clavate. The six setae on the penultimate segment are all rather enlarged, and measure about one-third the breadth of the segment (fig. 3A).

FIG. 3.
Posterior end of abdomen, showing setae and "anal plate."
A. Dorsal view (Tergal setae only shown).
8. Ventral view (Eternal setae only shown). Part of "anal plate" protruding.
C. "Anal plate."

The fifth pair of tactile setae (trichobothria) measures about 0.3 mm . in length, and is about twice as long as the breadth of the segment (fig. 3 A) ; along its distal two-thirds is a very delicate close pubescence, but the proximal third is naked. The fourth tactile seta is a little less than four-fifths the length of the fifth; like the fifth it is faintly pubescent, the basal end alone being bare. The third seta is rather more than half the length of the fifth, and about three-quarters the breadth of its segment; it is faintly pubescent to within one-quarter its length from its base. The second and first setae are about half the length of the fifth, only the distal half being faintly pubescent.

Anal segment (fig. 3). At its posterior tip the tergum of the anal segment grows out as an inconspicuous thin protuberance above the "anal plate," but is not as
prominent as the protuberances that have been figured here for some species of Pauropus. The setae are all cylindrical, ending bluntly. The lateral and intermediate tergal setac are about equal in length, and about twice the length of the submedian setac. The distance between the two submedian setae is about the same as the distance between the submedian and intermediate setae and is about three times the distance between the intermediate and lateral setae.

Of the sternal setae the posterior are much the largest, and are about twice the length of the anterior tergal setae; the lateral sternal setae measure about the same length as the lateral tergal setae (fig. 3B).

The "anal plate" (fig. 3C) measures about 025 mm . in length, and is furnished with four processes lying in the same plane. The median cleft, which extends

FIG. 4.
Leg.
A. Posterior leg.
B. Distal end of same, from a caustic potash preparation, chitin stained with eosin. Note incipient division of distal leg segment, indicated by constriction and thinning out of chitin (dotted).
C. Distal end of tarsus of left hind leg (external aspect).
D. The same (ventral view) ; note absence of posterior claw (posterior end to right).
E. Similar view of tip of tarsus of left sixth leg.
almost to the base of the plate, has a rounded ending. The two diverging outer processes curve inwards a little, and taper each to a point. The inner processes are rather thicker at the base; their distal end tapers into a narrow separately articulated and apparently very faintly pubescent segment.

The "styles" are thinner than the outer processes of the "anal plate," and are a little shorter than the submedian setae.

Legs (fig. 4). Like the dorsal shields these are completely free from pubescence. They increase considerably in length posteriorly, the last leg measuring about 0.3 mm . in length. The femur of the last leg (fig. 4A) is a little longer than the
trochanter, about half as long again as thick, and a little shorter than the tibia. The tibia is only a little longer than its seta. In the terminal segment of the last leg there is, as usual, mo demarcation of a metatarsus from a tarsus. But a little bevond its middle there is recognizable, with various degrees of clearness in different individuals, a partial constriction with thimed-out chitin (fig. 4B). This constriction is also perceptible in some of the more anterior legs, but not so clearly as in the last. This incipient division of the tarsus is not confined to the present species. Ont this point Hansen (1) writes: "In some large species of Pauropus the tarsus of the ninth pair presents a faint indication of a division into two joints, but this spurious articulation or thin-skinned place is always situated outside the middle of the tarsus and has nothing to do with the sharp division into metatarsus and tarsus existing in the eighth and other pairs, in which the metartarsus is always much shorter than the tarsus."

The seta of the tibia of the last leg is tapering and pubescent. A similar but shorter seta arises from near the upper end of the tarsus. At the lower end of the tarsus is a very short cylindrical faintly pulescent seta, about as long as the claw. The coxa and trochanter bear each a single biramous seta; in the more anterior tegs the corresponding setae are uniramous.

The middle claw of alt the legs is well developed; the posterior claw is smatl, and on the last pair of tegs is not merely of diminished size, as in most species, but completely absent (cf. figs. 4C. D, E).

Locality. Belgrave. V'ictoria.
Type in National Museum, Melhourne.
Of the described species of Pauropus Harrison's P. australis seems to approach the nearest to the new species above described. In size both are about the same, though P. custralis seems to be much more slender. Particularly striking is the general resemblance of the hind legs with its reduced number of claws. ${ }^{1}$ the anal plate and the posterior setae. The head and antennae of P. australis have not been described with sufficient attention to those minute points of detail that are needed for the differentiation of species in Pauropus. On the principal points of difference Harrison is quite definite. In P. australis "the cuticle shows a fairly long pubescence on the last shiekd, anal segment, and posterior legs; a slight pubescence on the fifth shield; and is smoath in from of that": in P ' silataticus the dorsat shieds and the legs are completely free from pubescence. In P^{\prime}. australis Harrison found the first tactile seta (trichobothrium) to be "very coarsely plumose distally"; in P. silioticus the seta is uniformty faintly pubescent along its ctistal half.

Hubits.-The animats may be found under stones, fallen timber, or amonest the thick deposit of fallen leaves on the forest floor. They ako enter rotting tree-trunks, half-decayed logs of treefern (Alsophila, Dichsonia) being particularly favoured. I have obtamed several hundred ont of a single such log. They seleat a damp environment, dry or wet surmundings being botlo avoided. 'Iher are liglit-shy creatures, and quickly rm for cover when disturbed.

Oriposition takes place in the early and middle summer months, the egrg being scattered about singly in the decaying vegetation within which the anmals live. The eggs are white and spherical,

[^0]extremely minute, measuring seldom more than 0.11 mm . in diameter. All the larval stages, comprising animals with 3,5, 6 and 8 pairs of legs can be found in abundance during the summer, in places where the adults are prevalent.

There is no evidence that the animals are predaceous, as some writers on Pauropus have inferred from the activity of their movements; nor do they seem to ingest solid vegetable material, for this is not recognizable in the distended intestine. The latter, indeed, contains nothing but fluid material. It seems that Pauropus subsists upon organic matter dissolved in the juices of the rotting vegetation within which it lives.

Despite the agility of their movements the animals are much preyed upon by the more slowly moving pedipalps and predaceous mites that form part of the associated microfauna; and I have occasionally seen even adult animals that have fallen victim to their attack.

Unlike one of the species described by Harrison (P. amicus), it cannot be said of P. silvaticus that it is markedly sociable in its habits. In captivity, it is true, the animals sometimes congregate under fragments of leaf or wood in the breeding receptacles, but I have not encountered this under natural conditions. Nor do the animals exhibit the remarkable maternal instinct of guarding their eggs, as observed by Harrison in P. amicus; indeed, the eggs are not laid in clumps, but, as already stated, are scattered about singly and at random amongst the rotting vegetation in which they live.

References

1. Hansen, H. J. On the genera and species of the order Pauropoda. Vidensk. Meddel. d. nathist. Forening, Copenhagen, 1901, p. 323.
2. Harrison, L. On some Pauropoda from New South Wales. Proc. Linn. Soc. N.S.W., 1914, xxxix, p. 615.
3. Lubbock, J. On Pauropus, a new type of Centipede. Trans. Linn. Soc. London, 1868, xxvi, p. 181.

[^0]: 1. Harrison's statement that it is the middle claw that is absent in the hind leg is probably an error: it is the normally diminutive posterior claw that becomes reduced in the ninth leg in all species of Pauropus (Hansen, 1901), and has completely vanished in P. siluaticus.
